Solution of Assignment 5

- Q1. The standard parameters of a normal distribution are
 - (a) μ and σ^2
 - (b) μ^2 and σ
 - (c) μ^2 and σ^2
 - (d) Any of the above
- Q2. Which type of distribution model is viewed as sum of several exponentially distributed processes?
 - (a) Binomial
 - (b) Negative binomial

(c) Erlang

- (d) Lognormal
- Q3. The covariance between the joint random variables X and Y, denoted by Cov (X, Y) is defined by (a) E(XY) E(X)E(Y)
 - (b) E(X)E(Y) E(XY)
 - (c) E(X) + E(Y) E(XY)
 - (d) E(XY) + E(X)E(Y)
- Q4. Cov (X, Y) > 0 means X and Y are (a) **Positively correlated**
 - (b) Negatively correlated
 - (c) Uncorrelated
 - (d) None of these
- Q5. Which of the following statement is correct for Empirical model?
 - (a) All outcomes are equally likely
 - (b) A process when only the minimum, most likely and maximum values of the distribution are known
 - (c) Often used when no theoretical distribution seems appropriate
 - (d) None of these
- Q6. Which of the following statement is correct for Triangular model?
 - (a) All outcomes are equally likely
 - (b) A process when only the minimum, most likely and maximum values of the distribution are known
 - (c) Resamples from the actual data collected; often used when no theoretical distribution seems appropriate
 - (d) None of these
- Q7. The correlation between the random variables X and Y, denoted by Cor (X, Y), is defined by (a) Cor (X, Y) = Cov (X, Y) / (Var (X) Var (Y))^{1/2}
 - (b) Cor (X, Y) = Cov (X, Y) (Var (X) Var (Y))^{1/2}
 - (c) Cor (X, Y) = (Var (X) Var (Y))^{1/2}
 - (d) Cor (X, Y) = Cov (X, Y) + (Var (X) Var (Y))^{1/2}
- Q8. Var (X) is defined as
 - (a) $[E(X)]^2 E(X^2)$
 - (b) $E(X^2) [E(X)]^2$
 - (c) $E(X^2) + [E(X)]^2$
 - (d) $[E(X)]^2 + E(X^2)$
- Q9. Independent random variables are always
 - (a) Positively correlated
 - (b) Negatively correlated

(c) Uncorrelated

(d) None of these

- Q10. A quantile-quantile plot is useful tool for evaluating
 - (a) **Distribution fit**
 - (b) Uniformity
 - (c) Dependence
 - (d) Both uniformity and dependence
- Q11. Suppose that X and Y are jointly discrete random variables with

$$p(x,y) = \begin{cases} \frac{x+y}{30} & for \ x = 0, 1, 2 \ and \\ y = 0, 1, 2, 3 \\ 0 & otherwise \end{cases}$$

Expression for $P_x(x)$ will be

(a) (2x+3)/15

- (b) (2x+7)/15
- (c) (3x+7)/15
- (d) (3x+11)/15

Solution: $P_x(x) = \sum_{y=0}^{3} (x + y)/30 = (2x + 3)/15$

Q12. Suppose that X and Y are jointly discrete random variables with

	(x + y)	for $x = 0, 1, 2$ and
p(x,y) = -	30	y = 0, 1, 2, 3
1.		otherwise

Then, E(X, Y) will be equal to

- (a) 14/5 (b) **12/5**
- (c) 16/5
- (d) 13/12

Solution: E (X, Y) =
$$\sum_{x=0}^{2} \sum_{y=0}^{3} xy \ p(x, y) = (1/30) \sum_{x=0}^{2} \sum_{y=0}^{3} (x^2 y + x y^2) = 12/5$$

Q13. Suppose that X and Y are jointly discrete random variables with

$$p(x,y) = \begin{cases} \frac{x+y}{30} & for \ x = 0, 1, 2 \ and \\ y = 0, 1, 2, 3 \\ 0 & otherwise \end{cases}$$

Then, E (X) will be equal to

(a) 16/15
(b) 17/15
(c) 19/15
(d) 23/15

Solution: E (X) = $\sum_{x=0}^{2} x p_x(x) = 0(3/15) + 1(5/15) + 2(7/15) = 19/15$

- Q14. The important step in developing model from input data are
 - (i) Collect data from the real system of interest.
 - (ii) Identify probability distribution to represent process
 - (iii) Choose parameters that define a distribution family
 - (iv) Evaluate for goodness of fit

Chi square and K-S test are used for

(a) Only iv

- (b) Only ii and iv
- (c) Only iii and iv
- (d) Only ii
- Q15. Match the following type of distribution with their property given in the table below.

Distribution

Property

- (A) Poisson(B) Exponential
- (C) Uniform
- (i) All outcomes are equally likely
- (ii) Models time between independent events, has a memoryless property
- (iii) Models the number of independent events that occur in a fixed amount of time or space
- (a) A-iii, B-i, C-ii
 (b) A-ii, B-i, C-iii
 (c) A-ii, B-iii, C-i
 (d) A-iii, B-ii, C-i